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Abstract
Motivated by recent experiments, we have studied the transport behavior of coupled quantum
dot systems in the Coulomb blockade regime using the master (rate) equation approach. We
explore how electron–electron interactions in a donor–acceptor system, resembling weakly
coupled quantum dots with varying charging energy, can modify the system’s response to an
external bias, taking it from normal Coulomb blockade behavior to negative differential
resistance (NDR) in the current–voltage characteristics.

The switching and negative differential resistance (NDR)
behavior of nanoscale systems has gained a lot of interest
in the last decade, owing to the potential applications in
single-molecule electronics and has been observed in a variety
of experimental systems, especially in the widely studied
Tour molecules [1, 2]. There have been many theoretical
studies to understand this phenomenon mainly through the
one-electron picture [3–7]. There have also been a number
of theoretical studies on donor–acceptor double quantum dot
systems, where strong rectification has been observed [12], and
others which showed NDR with variation in the dot–electrode
coupling [8, 13, 14] or due to a detuning of the dot levels [13].
Another recent study has attempted to establish the conditions
obeyed by the parameters involved, to find such a collapse
in the current magnitude [15]. Some recent experiments on
double quantum dots also showed an NDR feature [16, 17]
and has rekindled interest in the phenomenon occurring in
the low temperature weak-coupling limit. Theoretical studies
of NDR in this single-electron charging limit is now gaining
prominence and attracting a lot of research [9–11]. This
regime, where mean-field descriptions usually fail, is one
where electron charging energies are very high compared to
the broadenings due to average coupling, and are particularly
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important for small molecules which behave more like a
quantum dot than a wire [18, 19]. Since mean-field methods
combined with standard non-equilibrium Green’s function
(NEGF) [20–23] treatment of transport is perturbative in the
interaction parameter, it cannot capture the transitions between
the spectrum of neutral and excited states, which can lead
to a variety of interesting features in the current–voltage
characteristics. The formalism that has now come to be used
widely to capture molecular transport in the Coulomb blockade
regime is the master or rate equation method [24].

In this paper, we use the above formalism to study a two-
dot system consisting of a donor and an acceptor (see the
schematic given in figure 1) in the Coulomb blockade regime.
Taking our cue from our previous mean-field transport studies
on two-level systems which showed interesting nonlinear
behavior in their current–voltage characteristics [6], here
we explore the role of strong correlations in affecting their
transport behavior. This study becomes interesting, especially
in the context of the difference in their low-lying excitations,
which would play a very important role in their low-bias
current–voltage characteristics. The rate equation formalism
describes transport through a correlated system with many-
body eigenstates. The presence of Coulomb interactions results
in occupation probabilities of each many-body state that cannot
be factorized as the product of the occupation probabilities
of each single-electron level. Hence, in this case, the full
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rate equation problem, where the occupation probability of
each many-body state is treated as an independent variable,
is solved, neglecting off-diagonal coherences. In this method,
the transition rate, �s ′→s , from the many-body state s ′ to s,
differing by one electron, is calculated up to linear order in �

(which is the bare electron tunneling rate between the system
and the electrodes), using Fermi’s golden rule as [25]

�L+
s ′→s = � fL(Es − E ′

s)
∑

σ

|〈s|C†
1σ |s′〉|2

�R+
s ′→s = � fR(Es − E ′

s)
∑

σ

|〈s|C†
Nσ |s′〉|2

(1)

with a corresponding equation for �L−
s→s ′ and �R−

s→s ′ obtained
by replacing fL,R(Es − E ′

s) by (1− fL,R(Es − E ′
s)). Here, +/−

correspond to the creation/annihilation of an electron inside
the dot due to electron movement from/to the left (L) or right
(R) electrode. C†

1σ and C†
Nσ are the creation operators for

electrons of spin σ at the first and N th sites, respectively. We
have also assumed that the creation and annihilation happen
only at the terminal sites. The total transition rate is then
obtained as �s→s ′ = �L+

s→s ′ + �R+
s→s ′ + �L−

s→s ′ + �R−
s→s ′ . The

non-equilibrium probability Ps of occurrence of each many-
body state s is obtained by solving the set of independent rate
equations defined by Ṗs = ∑

s ′(�s ′→s Ps ′ − �s→s ′ Ps) through
the stationarity condition Ṗs = 0 at steady state. This results
in a homogeneous set of equations of the size of the many-
body space. Taking advantage of the normalization condition∑

s Ps = 1, we obtain linear equations, which can be solved
using well-known linear algebraic methods. The steady state
probabilities are then used to obtain the terminal current as

Iα = e

h̄

∑

s,s ′
�α+

s ′→s Ps ′ − �α−
s→s ′ Ps (2)

where α = L/R. Using the above prescribed method, we study
a two-site system described by the Hamiltonian:

H =
2∑

i=1

(εi − eWg)a
†
i ai +

∑

σ=↑,↓
−t (a†

1σa2σ + h.c.)

+ U
2∑

i=1

ni↑ni↓ + V12(n1 − n̄)(n2 − n̄) (3)

where t is the hopping strength between the sites with the
same spin (σ ), ε1,2 are the on-site energies, U is the Hubbard
interaction between electrons at the same site, V12 is the
nearest-neighbor Coulomb interaction and Wg is the external
gate bias. The average charge (n̄) is assumed to be unity
here [26]. n̄ actually gives a constant shift to the energy
levels with a fixed number of electrons. For two sites with
two electrons, the energy levels are negatively shifted by an
amount V12. Note that there exists two quantum phases in
this model with the variation of interaction parameters. For
the half-filled ground state, with zero on-site energies, while
U > V12/2 represents a spin density wave (SDW) phase,
U < V12/2 corresponds to the charge density (CDW) phase in
the thermodynamic limit [27, 28]. However, in our case with
two sites, while for U < V12, the half-filled ground state gives
higher preference to the state with two electrons of opposite

Figure 1. A schematic representation of a two-dot system consisting
of a donor and an acceptor coupled to two electrodes.

spins at one site, for U > V12 the state with one electron at
each site is more preferred.

To study the transport properties through a double
quantum dot system comprising of a donor and an acceptor
in the weak-coupling regime, we parameterize the different
coupling strengths in the total system (system + leads). For
perturbation theory to be valid at temperature T , we ensure
that � � kBT . More specifically in our calculations, we
use the value of � = 0.25 meV for T = 300 K and � =
0.01 meV for T = 0.66 K, which are also much smaller than
the corresponding charging energies, e.g. Hubbard U . As our
primary interest focuses on the NDR effect in the system, we
choose the asymmetry in the on-site energy (�ε = ε2 − ε1) to
be larger than the interdot hopping parameter (t), and vary the
Hubbard U around �ε.

We adopt the well-known exact diagonalization (ED)
method to solve the Hamiltonian in equation (3) for the system
containing two sites. As the total number of electrons, N ,
and the z component of the total spin, Sz , commute with
the Hamiltonian (H ) and can be considered as conserved
quantities, the H matrix can be diagonalized for a particular
charge and spin sector. The Fock space can then be factored
into many blocks, with the largest block consisting of four
states with quantum numbers, number of electrons (N) = 2
and Sz = 0. The ground state energies for N = 1 (E1e), N = 2
(E2e) and N = 3 (E3e) with on-site energies ε1 = ε2 = 0 can
be easily found (n̄ = 1):

E1e = −t − Wg

E2e = U − V12

2
−

√
(U − V12)

2

4
+ 4t2 − 2Wg

E3e = U − t − 3Wg.

(4)

Thus, the gate bias window (�Wg = E0
3e + E0

1e − 2E0
2e) over

which the N = 2 (half-filled) state becomes the lowest energy
state can be estimated to be

�Wg = −2t + V12 +
√

(U − V12)
2 + 16t2 (5)

which strongly depends on the parameters involved. E0
1e, E0

2e
and E0

3e are the ground state energies for 1e, 2e and 3e states,
respectively, in the absence of gate bias. However, with
inclusion of asymmetric on-site energies, the general analytical
expression for the energies assumes a complicated form. For
chosen on-site energy values considering donor and acceptor
sites, ε2 = −ε1 = 2.0 eV, we plot in figure 2 the number
of electrons in the lowest energy state as a function of gate
bias. This is obtained by calculating the many-body states with
minimum energy at every value of gate bias Wg as Min (Es).
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Figure 2. The number of electrons (N) in a two-site donor–acceptor
system with variation of gate bias of the system (Wg) for various
values of the Hubbard parameter U . The inset shows the same for
U = 5 eV with different values of nearest-neighbor Coulomb
interaction parameter, V12. Here, ε2 = −ε1 = 2.0 eV, t = 1.0 eV and
all the values of U and V12 are in eV (n̄ = 1).

For U < 4 eV, with the increase in on-site electron–electron
interaction, there is a reduction in gate bias over which the
two-electron state is stable, while, in contrast, for U > 4 eV,
the gate bias window increases with the increase in on-site
electron–electron interaction. Furthermore, for V12 values
closer to or greater than U/2, the bias range over which the
two-electron state is the lowest energy state increases with the
increase in V12. This happens because an increase in U by
1 eV causes no change to E0

1e, an increase of 1 eV to E0
3e, but

an increase of more than 0.5 eV to E0
2e for U < 4 eV and

an increase of less than 0.5 eV to E0
2e for U > 4 eV. This is

due to the fact that, for U < 4 eV, the two-electron ground
state gives higher preference to the state with two electrons of
opposite spins at the site with lower on-site energy. However,
for U > 4 eV, it prefers the state with one electron each at the
donor and at the acceptor. Hence for U < 4 eV, an increase
in U value by 1 eV causes an increase in the value of 2E0

2e by
more than 1 eV and an increase of 1 eV to E0

3e, so effectively
reducing the value of �Wg. However, for U > 4 eV, the
increase in the value of 2E0

2e is always less than 1 eV and hence
�Wg increases with the increase in U value.

For obtaining the current, for every value of U and V12,
the Fermi energy (EF) is chosen as the value of the gate
bias which ensures that the two-electron state is the ground
state. The Fermi energy is also placed in such a way that
we observe the transition from the ground state to the state
with one less electron. After fixing the Fermi energy, we have
studied the current as a response of source–drain bias (V ) in
all our calculations. In figure 3, we have plotted the I –V
characteristics of the system for a range of U and V12 values
at room temperature. As can be seen clearly, low values of U
result in step-like features in I –V characteristics, while with
an increase in U , a rise and fall in current (an NDR feature) is
observed for positive values of source–drain bias. Interestingly,
with inclusion of the nearest-neighbor Coulomb interaction,
V12, the I –V characteristics show a wide plateau region before

Figure 3. Current (I )–source–drain voltage (V ) characteristics of the
two-site donor–acceptor system for various values of U and the inset
(a) represents the same for U = 5 eV with various V12 values for
ε2 = −ε1 = 2.0 eV, t = 1 eV, � = 0.25 meV and temperature
(T ) = 300 K. The inset (b) shows the same for ε2 = −ε1 = 2 meV,
t = 0.2 meV, U = 4 meV, � = 0.01 meV and temperature
(T ) = 0.66 K.

showing an NDR feature. However, the height of the NDR
peak decreases in the positive source–drain bias region with an
increase in V12. To compare our results with the experimental
findings at low temperature, in the inset (b) of figure 3, we have
plotted the low temperature behavior of I –V characteristics.
Note that the NDR peak together with the overall I –V feature
compare fairly well with the experimental results obtained by
Tarucha et al on GaAs-based double quantum dots [17]. We
also note that there is, in fact, no qualitative change in the
I –V characteristics except for a constant shift in bias, if we
change the average dot charge (n̄ = 1) from one to zero in the
Hamiltonian in equation (3).

The step-like feature in I –V is well understood in the
literature as due to Coulomb repulsions [15, 29]. However,
to understand the NDR feature, we analyze the probabilities
of the occurrence of various many-body states. We find
that the NDR occurs when the source–drain bias drives the
system from the 1e doublet to a higher excitation of the 2e
state, namely the triplet states, instead of to the state with
zero electrons. It is because, when U is small, the ground
state gives higher preference to the state with two electrons
of opposite spins at the site with lower on-site energy. This
allows annihilation of an electron by the electrode followed
by one more annihilation leading to a transition from the
2e singlet to the 1e doublet and then to the state with zero
electrons. However, when U increases, the ground state gives
more weight to the state with one electron at the donor and
one at the acceptor. This allows for one-electron annihilation
from the ground state to the 1e doublet state, followed by a
creation of an electron from the same electrode to the 2e triplet
state, which has the same energy as the zero-electron state.
Since the current at any electrode is calculated at steady state
as the difference between the outgoing and incoming current,
this transition results in a reduction in current, leading to the
negative differential resistance (NDR) peak in the large U
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(i) (ii)

Figure 4. A schematic describing the transitions between the states
of the donor–acceptor system: (i) in the small U regimes, (ii) in the
large U regimes. The arrow direction indicates the states to which
the transition occurs.

limit. A schematic figure describing the states involved with
an increase in positive source–drain bias for small and large U
limits are shown in figure 4. Note that, with inclusion of V12,
particularly for large V12 values, the charge density modulated
state gets prominence, similar to the ground state electronic
configuration as in the small U limit. Thus, with the increase
in V12, the NDR feature gets suppressed. Also, since with the
inclusion of V12, the gate bias range over which the 2e state
remains the ground state differs, we pin the electrode’s Fermi
energy in such a way that the transition from 2e singlet to 1e
doublet state occurs at the same values of V (see the inset (a) of
figure 3) for a range of V12 values. However, with an increase in
positive bias, the electrochemical potential at the left electrode
(μL) moves down and that at the right electrode (μR) moves up,
causing the transport channel ε = ET − E1e to be in resonance
with the levels of the electrodes, where ET and E1e are the
energy levels associated with the 2e triplet state and 1e doublet
state, respectively. With large V12 values, this channel width
causes the plateau in I –V characteristics to be wider before
showing NDR.

To understand the NDR feature more clearly, and to
estimate the height of the peak value in the I –V plot in figure 3,
we calculate the probability of occurrence of the 2e triplet state
with the increase in V for a range of Hamiltonian parameters.
In figure 5, we have plotted the variation of current and the
occupation probability of the 2e triplet state with source–drain
bias for U = 5 eV. It is clear that, when the occupation
probability of the 2e triplet state starts increasing appreciably,
the current decreases in magnitude, however, only to a nonzero
value. The main point is that the triplet state being the blocking
state suppresses the current: however, since its probability of
occurrence does not increase more than 30%, there is still some
finite current (leakage current) which flows through the system.
Note that the I –V characteristics are asymmetric because of
the inherent asymmetry in the system comprising of a donor
and an acceptor with different site energy (ε) values.

In conclusion, we have studied transport behavior of
the donor–acceptor system in the Coulomb blockade regime
through the rate equation approach. Our study shows how the
variation in the on-site Coulomb repulsions can influence the
system’s response to an external source–drain bias. A strong
Coulombic repulsion even results in NDR for positive values

Figure 5. The variation of (a) current (I ) and (b) occupation
probability (PT) of the 2e triplet state with source–drain bias,
corresponding to U = 5 eV and varying V12 values: V12 = 0 eV
(solid line), V12 = 1 eV (circle) and V12 = 3 eV (triangle).

of source–drain bias in the I –V characteristics. Also, a strong
nearest-neighbor Coulomb interaction suppresses the NDR-
like feature, taking the system back to the normal Coulomb
staircase regime.
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